Learning from Host-Defense Peptides: Cationic, Amphipathic Peptoids with Potent Anticancer Activity
نویسندگان
چکیده
Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR), causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance.
منابع مشابه
Prostate tumor specific peptide-peptoid hybrid prodrugs.
Inspired by naturally occurring host defense peptides, cationic amphipathic peptoids provide a promising scaffold for anti-cancer therapeutics. Herein, we report a library of peptide-peptoid hybrid prodrugs that can be selectively activated by prostate cancer cells. We have identified several compounds demonstrating potent anti-cancer activity with good to moderate selectivity. We believe that ...
متن کاملAntimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent ...
متن کاملMultifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides.
The ever-increasing number of drug-resistant bacteria is a major challenge in healthcare and creates an urgent need for novel compounds for treatment. Host defense antimicrobial peptides have high potential to become the new generation of antibiotic compounds. Antimicrobial peptides constitute a major part of the innate defense system in all life forms. Most of these cationic amphipathic peptid...
متن کاملEffect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids.
Peptoids are peptidomimetic polymers that are resistant to proteolysis and less prone to immune responses; thus, they can provide a practical alternative to peptides. Among the various therapeutic applications that have been explored, cationic amphipathic peptoids have demonstrated broad-spectrum antibacterial activity, including activity towards drug-resistant bacterial strains. While their po...
متن کاملA practical method for the synthesis of peptoids containing both lysine-type and arginine-type monomers.
Peptoids are a promising class of peptidomimetics that exhibit the key chemical and physical properties of peptides but without being hampered by susceptibility towards enzymatic degradation. Biologically active peptoids are often designed to be amphipathic in nature, consisting of hydrophobic monomers interspersed with either cationic lysine-type or arginine-type monomers. Access to amphipathi...
متن کامل